
December 3-6, 2007, Santa Clara Marriott, Santa Clara, CA

Python CIM Providers with
PyWBEM

Bart Whiteley

Agenda

• Motivation
• Design Goals
• Benefits
• Architecture
• Interface Details
• Demonstration
• References

Motivation

• Current provider interfaces (CIMOM-specific C++,
CMPI, CIMPLE, ...) expose too many details of the
WBEM operations.

• Current provider interfaces require too much boilerplate
code.

• Providers required more build management effort than
they should.

• Inspired by the ease and power of the PyWBEM client
API.

• Leverage the dynamic nature of Python.

Design Goals

• Don't require provider writers to do anything that the
provider interface could do for them.

• Ease of development.

• Ease of deployment.

• Leverage PyWBEM objects.
– PyWBEM objects can be passed directly from PyWBEM client

to python provider interface.

• Consistency with PyWBEM client API.
– “Upcall” CIMOM handle matches pywbem.WBEMConnection.

• CIMOM neutral.

• Reduce operations.

• Reduce parameters.

Benefits

• Easy to debug.

• Provider writers can
focus on solving the
problem of
instrumentation.

• Greatly reduced time to
market.

• Less opportunity for error.

• Reduced LOC
– Process Provider

• C++: 3600
• CMPI: 3338
• Python: 800

– File System Provider
• C++: 2900
• CMPI: 1383 (subset

of classes/features)
• CIMPLE: 1230 +

8650 generated
• Python: 440

Architecture Diagram

C++ CMPI

CIMOM
(OpenWBEM or Pegasus)

C++ Provider
C++ Provider

C++ Provider

CMPI Provider
CMPI Provider

CMPI Provider

Python Provider
Python Provider

Python Provider

Provider Managers Python
Python Runtime

pywbem/cim_provider.py

Architecture

• Implemented as a provider manager for OpenWBEM
and Pegasus.

• Converts native CIMOM objects to PyWBEM objects.

• Loads Python modules (the providers).

• Provides “upcall” CIMOM handle and other CIMOM
services to providers through Python extensions.

• Python abstraction layer (cim_provider.py) maps
WBEM operations from CIMOM to simplified, more
friendly Python provider interface.

Interface Concepts

• Combine similar operations into one method.
– EnumerateInstanceNames, EnumerateInstances -->

enum_instances().

– Associators, AssociatorNames, References, ReferenceNames
--> references().

– CreateInstance, ModifyInstance --> set_instance()

• Pass to the provider a “model” of the object(s) the
provider should return.
– The model is completed as much as possible by the interface.

– The model conveys more information, such as PropertyList.

• Eliminate the need for providers to dispatch extrinsic
methods.

'model' Parameter

• A pywbem.CIMInstance passed to instance and association
methods.

• Attributes:
– path – A pywbem.CIMInstanceName representing the ObjectPath of the

instance.

– classname – The name of the class.

– properties – A case-insensitive dictionary containing the properties.

• Methods:
– update_existing(<mapping>) -- Update the values of properties, iff the

properties are already present in the instance.

• Behaves like a Python dictionary.
– model['propname'] returns/assigns the property value.

– model.properties['propname'] returns/assigns the
pywbem.CIMProperty instance.

'model' continued.

• Properties in the model correspond to the PropertyList parameter
from the request, if present.
– If a property is not present in the model, no need to compute and set the

property value on the instance.

– update_existing() method is useful for this.

• Providers can chose to ignore the PropertyList information, and
set all of the properties.
– The provider interface will filter for you.

– This is configurable.

• In the case of get_instance, Key properties are set before calling
into the provider.

• The provider should update the model, and return or yield it,
depending on the method.

11

pywbem.CIMProvider Class

• Python base class for
Instance, Association,
and Method providers.

• A single subclass of
pywbem.CIMProvider
can service multiple CIM
classes.

• A single Python provider
module can contain
multiple subclasses of
pywbem.CIMProvider.

• CIMProvider methods:
– __init__()
– get_instance()
– enum_instances()
– set_instance()
– delete_instance()
– references()
– Extrinsic methods.

get_instance

def get_instance(self, env, model, cim_class):

• Return the requested pywbem.CIMInstance.

• If the model does not correspond to a valid instance, raise
pywbem.CIMError(pywbem.CIM_ERR_NOT_FOUND).

• Otherwise, set additional properties on the model, and
return the model.

• Keyword arguments:
– env – Provider environment

– model – A template of the pywbem.CIMInstance to be returned. The
key properties are set corresponding to the requested instance. If
the request included a PropertyList, only properties in the
PropertyList are present in the model.

– cim_class – A pywbem.CIMClass representing the CIM class whose
instance is requested.

enum_instances

def enum_instances(self, env, model, cim_class,
 keys_only):

• Python generator used to enumerate instances.

• For each instance, update the properties on the model,
then yield the model.

• Keyword arguments:
– env – Provider Environment.

– model – A template of the pywbem.CIMInstances to be
generated. Similar to get_instance.

– keys_only – True if request was EnumerateInstanceNames.
False if request was EnumerateInstances.

– cim_class – A pywbem.CIMClass representing the CIM class whose
instance is requested.

set_instance

def set_instance(self, env, instance, previous_instance,
 cim_class):

• Create or Modify an instance, or raise a
pywbem.CIMError with an appropriate
pywbem.CIM_ERR_*.

• Keyword arguments:
– env – Provider environment.

– instance – A pywbem.CIMInstance representing the new
instance.

– previous_instance – None if doing a CreateInstance,
otherwise the pywbem.CIMInstance representing the old
instance prior to modification.

– cim_class – A pywbem.CIMClass representing the CIM class whose
instance is requested.

delete_instance

def delete_instance(self, env, instance_name):

• Delete the specified instance, or raise a
pywbem.CIM_Error with an appropriate
pywbem.CIM_ERR_*.

• Keyword arguments:
– env – Provider environment

– instance_name – A pywbem.CIMInstanceName representing
the instance to be deleted.

references

def references(self, env, object_name, model, assoc_class,
result_class_name, role, result_role, keys_only):

• Handles all association operations (Associators,
AssociatorNames, References, ReferenceNames).

• Python generator that yields instances of pywbem.CIMInstance
representing CIM instances of the association class.

• Keyword arguments:
– env – Provider environment

– object_name – The target object

– model – A template of the pywbem.CIMInstance to be returned.

– result_class_name, role, result_role – See DSP0200.

– keys_only – True if handling ReferenceNames.

– assoc_class – A pywbem.CIMClass representing the CIM
association class whose instance is requested.

Method Providers

• Providers don't need to dispatch methods.

• Just implement a python method matching the
signature of the CIM method.
– Method name is prefixed with “cim_method_”

– Method IN parameters are prefixed with “param_”

• Return a 2-tuple containing the return value, and a
dictionary with the OUT parameters.

Method Provider Example

• MOF:

uint32 RequestStateChange([IN] RequestedState,
[IN(false), OUT] CIM_ConcreteJob REF Job,
[IN] datetime TimeoutPeriod);

• Python:

def cim_method_requeststatechange(self, env,
 object_name, method, param_requestedstate,
 param_timeoutperiod):

– object_name – A pywbem.CIMInstanceName or
pywbem.CIMClassName indicating the target object.

– method – A pywbem.CIMMethod representing the CIM method
definition.

– param_requestedstate and param_timeoutperiod are the IN
parameters.

– Return a 2-tuple containing the return value (pywbem.Uint32) and
the dictionary
{'job':pywbem.CIMInstanceName('CIM_ConcreteJob', ...)}

Module Functions

• Required:
– get_providers(env)

• Returns a dictionary mapping CIM class names to instaces of Python
provider classes.

• Optional:
– init(env)

• Optional. First method called.

– shutdown(env)
• Called when the provider is unloaded.

– can_unload(env)
• Return True if the provider can be unloaded.

– Indication related methods.
• handle_indication, consume_indication, activate_filter, deactivate_filter.

• Not covered in this presentation.

Provider Environment

• The first parameter passed to most functions or
methods.

• Contains CIMOM services made available to providers.

• env.get_logger()
– Return a logger object.

• env.get_cimom_handle()
– Return an “upcall” CIMOM handle.

– “Upcall” CIMOM handle interface resembles WBEM
operations (DSP0200).

– “Upcall” CIMOM handle interface is compatible with
pywbem.WBEMConnection.

Provider Environment Example

logger = env.get_logger()

logger.log_debug('Debug Info')

ch = env.get_cimom_handle()

other_inst = ch.GetInstance(inst_path,
LocalOnly=False, IncludeQualifiers=False,

 IncludeClassOrigin=False)

Code Generation

• Writes much of the provider for you.

• Generated code is specific to the CIM class being instrumented.
– Intrinsic method stubs determined by the nature of the class.

– Property names and types.

– Extrinsic methods
• Method names.

• Parameter names and types.

• Return types.

• Promotes consistent patterns across providers.

• Comments in the code teach how to write Python providers.

• Code generation is optional. (compare CIMPLE)

• Greatly reduces ramp-up time.
– Just follow the instructions and fill in the blanks.

codegen

codegen(cim_class)

• cim_class is a pywbem.CIMClass
– Make sure it has all of the properties, methods, and qualifiers.

• Returns a 2-tuple containing:
– Syntactically correct Python provider module code, ready to

run (though it won't do much).

– Provider registration MOF.

Debugging

• Provider manager checks the timestamp of provider
modules, and reloads if timestamp is newer.
– Effortless to try the latest changes to provider code.

• Errors from providers, including syntax errors, are sent
as stack traces to the client application.

• Debugging becomes quick and easy.
– Nothing to rebuild.

– Nothing to reinstall.

Demonstration

 A live demo that includes:
• Generating provider module code using pywbem.codegen.

• Implementing the instance-related methods and extrinsic
methods.

• Deploying and using the provider.

• Similar to the QuickStart Guide on the wiki.

– http://pywbem.wiki.sourceforge.net/Provider+QuickStart

http://pywbem.wiki.sourceforge.net/Provider+QuickStart

Summary

• The easiest way to write and maintain providers.

• Simplified interface.

• Easy debugging.

• Easy deployment.

• CIMOM neutral.

References

• http://pywbem.sourceforge.net/

• http://pywbem.wiki.sourceforge.net/

• http://pywbem.wiki.sourceforge.net/Provider+QuickStart

• http://omc.svn.sourceforge.net/viewvc/omc/pybase/trunk/

• http://omc.svn.sourceforge.net/viewvc/omc/pyprofiles/

• http://www.dmtf.org/standards/published_documents/DSP200.html

• http://www.python.org/dev/peps/pep-0008/

http://pywbem.sourceforge.net/
http://pywbem.wiki.sourceforge.net/
http://pywbem.wiki.sourceforge.net/Provider+QuickStart
http://omc.svn.sourceforge.net/viewvc/omc/pybase/trunk/
http://omc.svn.sourceforge.net/viewvc/omc/pyprofiles/
http://www.dmtf.org/standards/published_documents/DSP200.html
http://www.python.org/dev/peps/pep-0008/

